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Abstract. The work of an engraver is shown through the presiem of three
types of engravings concerning minimal surfacegsed surfaces without
singularities, and bi-periodic functions.

1 Introduction: The Engraver's Job.

I make engravings on copper. From the followingdes one can
follow some of the many steps that end in the pctdo of an

image from the engraving. In this case it is anravigg of an olive
tree that could be used as an emblem for Provéineeggion where
I live and which | try to honor with some of my vksr

Fig.1. Fig. 2.
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Engraving

Engraving: The engraving method consists of cuttirogsions on a
copper plate with a kind of chisel called a burirhe finished
engraving is then printed using the intaglio methddat is, the
entire surface of the plate is coated with ink aafter wiping, the
ink remains in the incised markings. The printimggs consists of
two assembled steel cylinders, one atop the offer.inked copper
plate is then put on a steel plate on which theigdaced a wet piece
of Arches paper and a felt cloth; all of whichhemn passed between
the cylinders. The result gives a light relief bétincisions on the
paper.

My main inspiration, however, is different. It is mathematics that
helped me discover the meaning of models showmetristitute



Henri Poincaré, and it reminds me on the time ofyoyth, at the
Palais de la Découverte (see the article by Frafpéry). If | take

each of my visits to our capital to make printstiod rich Parisian
scenery, it is in Provence that | compose my enggsv of

mathematics. | will now give an overview on threerhes, namely,
minimal surfaces, closed surfaces without singtyarand bi-

periodic functions.

2. Minimal Surfaces

| started by studying certain surfaces of 3rd ahddégree, given by
simple equations that | could solve easily. | exeduthen lines
thanks to the Cavaliere perspective, drawing clyeéach of their
remarkable curves. When data processing appeamogtammed
myself in BASIC to compute these surfaces starfirgm their
parametric equations — today, | use standard sodtwalutions. It
was enough for me to choose the contour and theahengle of my
surfaces. Starting from a screen printing, | ol#dia copy of a basis
model being used for the future engraving.

| was interested in a family of surfaces which,csinthe 19th

century, bear the name of minimal surfaces. Themaerschool was
very active in this field. Weierstrald in 1866 dedva representation
formula for this particular family of surfaces:

x =[1-LIRQ)AX  y=li(1+IRQKX  z=]2LRQ)K (1)

R () is a function of a complex variabé=u + i v (i is the square
root of -1), which determines the specific mininsakface. Taking
the real part of x, y, and z gives the coordinatecfions of the
surface in the Euclidean 3-space which we alsotéenith x, y z.

2.1 Enneper Surface
The first minimal surface | studied with these fotes is that of
Enneper (1863) :



Fig. 7. Enneper surface

Here R {) = 3, from which one deduces, after integration

x=F - y=i@X+) z=F2
Then after taking the real part we obtain
X=3u+3uv2ty=-3v+3uv -¥),z=3u2- 32

2.2 Formulas of Monge and Weierstraf3
Thereafter, | used a generalized formula to remteseinimal
surfaces (H2&?R and F2=R):

x =[(F2- H2)dQ) y=Ii(F2+H2)dQ) z=[2FHdQ) @)

All these formulas make it possible to compute miai surfaces
starting from an isometric network. The networlcé@d on a surface
depends on functiorZ”. :

- If one taked = u + iv, the conformal representation on the
plane (since complex functions preserve angles)sni@@ square-
like grid on the minimal surface.

- To have a surface bordered by one or more closeges,
one will take &= &' (cos v + i sin v), the conformal representation,
here, will be made of concentric circles and ratiizes.



One can also use Monge's formula that one careXample,
deduce from the Weierstral® equations (1) or (1 "):

dx2+dy2+dz2=0.
This formula is in particular satisfied by the @lling functions:

x=1@Q), y=9Q), z=[iV(f(Q)?+gQ)? K.

The data of the functions F and G implies obviousbnd y, and in
general with some difficulty z, since computingeqjuires taking a
square root. Since f and g are functions of a cempériabled, they

define points (X, y) of this plane along a curvéeTwriting of z,

where f and g appear by their square, implies tresgmce of
symmetry at least.

2.3 Catalan Surface

Here is an example established from the cycloigeur the real
plane, which is studied since 1501 (cf:
http://www.mathcurve.com/courbes2d/cycloid/cycleidml). The
formula of the cycloid curve is:

X=Uu-=sinu, y=cosu

After replacement of u bg, one obtains the value of z easily:

X = —sin{
y = c0os(
Z = 4isin{/2

The developed equation gives us:

X =U-Sinucoshv
Yy = C0S u cosh v
z =4 sin u/2 sinh v/2



The parameters u and v being variable, we obtamtimimal
surface of Catalan (1814-1894):

Fig. 8. Catalan’s minimal surface

2.4 Jeener Surface

There exists many other simply plane curves fronickvlone can
obtain minimal surfaces. For example, starting ftbmplanar spiral
equation:

x=d"cost, y=8'sint
one builds the spiral minimal surface:
x = d" cost

y=d"sint
z =iV((d + m2)/m)
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Fig. 9. Minimal surface «a la Chouette»

Fig. 10. Spiral minimal surfaces



If, initially, 1 chose functions allowing me to te traditional
remarkable surfaces, | then left free course toimmgination. Here
IS an example:

x = U" cos mv — (m/(m + 2n)U?") cos(m+ 2n)v
y = U" sin mv + (m/(m + 2n) T™")sin(m + 2n)v
z = (2md"™"/(m + n))cos(m + n)v

These surfaces resemble flowers determined by @otsstn and n.

Fig. 11. Floraison

2.5 Minimal Surface with a Family of Parabolas
This surface, which comprises a family of paraboless studied by
Enneper in 1882. It is determined by:

RQ) = ia@? - 1)C°-i b/

The equation is thus:



X=au-asinuchv+bsinu/2shv/2
y=a-acosuchv+bcosu/2shv/2
z= 4asinu/2shv/2-bu/2

While making a = 1 and b = 0 one finds Catalani$ase, and for a
=0 and b = 1 the helicoid with planar axis.

2.6 Bonnet Surface

Within the framework of the general research onimah surfaces
having planar principal lines of curvature, Osdtmmnet discovers a
surface whose equation is:

X=ucosm+sinuchv

y=sinmcos uchv
Zz=v-cosmcosuchv

If one takes m =172, one finds the catenoid.
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Fig. 12. Bonnet minimal surface
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2.7 Henneberg Surface
Henneberg discovers the first one-sided resp. tendh minimal
surface, whose equation is:

X =3 cos u sh v—--cos 3u sh 3v
y =3 sinush v+ sin 3u sh 3v

Z =3 cos 2u ch 2v

Fig. 13. Henneberg surface
3. Topology of Closed Surfaces without Singularite

3.1 The first closed unilateral surface, the famKiesn bottle, was
discovered by Felix Klein in 1882. The Klein bottlean be
generalized to a surface having “n” bottles suihg following
general equation:

W = cos((m+1)u#/(m+1))+3/2
X =m cos u + cos mu - (m+1)/2m W sin (m-1)u/2 ¢os
y =m sin u—sin mu - (m+1)/2m W cos (m-1)u/2 gos
z=Wsinv
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These surfaces are generated by a family of cinelesse centres
move on a hypocycloid with n cusps. The surfaagnitateral when
the number of cusps is odd: n =2m + 1.

Fig. 14. Klein-bottle Fig. 15. Double Klein-bottle

The simplest generalized bottle is the triple leofth = 2, N = 3):

W = cos(3u +14) + 3/2
X = 2C0S U + cos 2u - 3/4W sin u/2 cos v
y = 2sin u — sin 2u - 3/4W cos u/2 cos v
z=Wsinv

Fig. 16. Triple Klein-Jeener bottle
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3.2 The First Unilateral Closed Surfacewith only one pole was
discovered by Werner Boy in 1902. It has a curve seff-
intersection, a three-bladed propeller. There sxastamily of these
surfaces. They have an odd symmetry. In the caseexXample,
where symmetry is of order 5, the lines of selérsection are made
up of two propellers with 5 blades of differentesz

Fig. 17. Boy surface igF18 Boy surface
with symmetry of order 3 with symmetry of order 5

There is a connected family, of even symmetry. &a$ of the two
families can be used, in an essential way, to etregt sphere.
Bernard Morin introduced and used that surface elsysnmetry is
of order 4 and which bears his name. The eversimurs at a
central stage where two models exist: the openamakthe closed.
The last model has a curve of self-intersectionfoar-bladed
propeller and two circles. (cf. the article of Racth Denner in this
volume). Surfaces of symmetry of order 3 and 4 haveommon
point: can be traced on each one of them and gnteeover a set of
ellipses. Their equations were published by Franépiéery [1].
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Fig. 19 Apéry model Fig. 20. Morin surface of order 8

These surfaces, thanks to their graphic complexitgphasize the
technique of engraving: indeed, one combines, thbeesrigour of a
basic data-processing layout with that of a workchanade. The
thickness and the texture of the curves, and itarcecases, of the
lines of self-intersection, must allow a good leélgipof surface.

3.3 Surfaces with Constant Total Curvature

Each point on a surface is the intersection of & p& two
orthogonal lines of curvature. The curvature of sheface at this
point is the product of the curvatures of the tiwed of curvature.
When this local curvature is same for each poirthefsurface then
it is said that surface has constant curvatureutfaSes of this type
are the sphere (K = 1), the plane (K = 0), andpeudo-sphere (K
= -1). Surfaces of negative curvature are cailgaerbolic

3.3.1 The Pseudo-sphere (K = -1)

Studied in particular by the Italian mathematicieltrami in 1868,
the pseudo-sphere is a surface of revolution gé&kray the
tractrix, a curve introduced about 1670 per Cladrault (cf.
http://www.mathcurve.com/courbes2d/tractrice/traetshtml).
Here is the equation of the pseudo-sphere:
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Xx=cos u/coshv
y =sin u/cosh v
zZz=v-tanhv
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Fig. 21. Pseudo-sphere

Here two other examples where K is equal to a negabnstant:
Dini surface, a helicoid, and Kuen surface, a 2@ol

3.3.2 Dini Helicoid (K =-1)

This helicoid is also generated by a tractrix; segond family of
curves is formed, here, of circular propellers. Egeation can thus
take the following form:

X =cos u /cosh v
y =sin u/ cosh v
z = v-tanh v +u/4
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Fig. 22. Dini surface

3.3.3 KuenSurface (K =-1)

The richness of the surface of Kuen allured sevargdts. One can
see a beautiful model at the Institute Henri Paiéc# inspired a
picture by Luc Bénard (cf. the article of Richardlds in this
volume). Here is the equation:

X =1 cosO
y =rsin@
z=logtanv/2 + acod
with ® = u - arc tan u, a = 2/(1 + u2 sin2v), and n£a + u?) sin v

and the engraving | made:

Fig. 23. Kuen surface
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3.3.4 Sievert Surface (K =+ 1)
The Sievert surface is an example with constantipesurvature K
= 1. Its equation is:

R = 2N(3)*(2sinv V(1+3sin2u))/(4-3sin2v cos2u)
0 = -u/2 + arctan(2 + tan u)
X =R cosH
y=Rsin B
z = 1N(3)*[log (tan (t/2))+8 cos t/(4-3 sin2t cos2u)]

Fig. 24. Sievert’s surface

3.3.5 Surfaces of Zero Curvature (K = 0)

Surfaces with K = 0 are locally isometric to a @arkxcept the
cones and the cylinders, these surfaces are thefltiee tangents to
a given skew curve.

Fig. 25. et 26. Skew surfaces
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4. Bi-periodical Functions

4.1 Jacobi Functions
Among the complex functions, the first function kwitwo periods
was discovered on the basis of the following altipttegral:

F=JdxA/(1-x2)(1-k2x?).

By inverting this integral, one obtains the Jadobiction called sine
amplitude, sn u. There exist two other functionslatobi: cosine
amplitude, cn u, and delta amplitude, dnu. Thesetfons are
connected in the following way: cn wf-sn2u) et dn u H1-

k2sn2u).

Fig. 27. Amplitude function Fig28. Sinus-amplitude function

4.2 Weierstrald Functions

Weierstral3 studies, in its turn, the bi-periodfcaictions which bear
his name. One starts from the integral {ds¥/(4s- @, s- ¢) where
g2 and g are invariants. ¢ & and g are the roots of the equation
45- g s- ¢ = 0.

These functions are denoted hy and O’, where O ' is the
derivative of(] . One thus gets for the first three terms of thieese

0= 1/u2 + g u2/20 + g u"/28
0'=-2/u + gu/10 +g W¥/7....
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For the engraving of the functidn, one takes g= 4 and g= 0

(case of the lemniscate) which gives us:
ee=-1,e=0ande=1.

The two periods are, here, equal, and their val#622...

Fig. 29. WeierstraR function[]

As regard of the functiofl ', we choose the equi-anharmonic case
g2 = 0 and g = 1. Engraving shows well that a section by a @lan
close to the top cuts the surface according toesuim the clover
shape. The plane z = 0 cuts the surface accordiagdssellation by
equilateral triangles.
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Fig. 30. Weierstral? function[]’
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Institute Henri Poincaré and at the Palais de leoD¢erte
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